西南学院大学 人間科学論集 第9卷 第2号 179-203頁 2014年2月

研究ノート

しゃぼん玉とセッケン膜の 干渉スペクトルの解析のための理論式

松村敬治・塩野正明

Theoretical Equations for the Analyses of the Interference Spectra of Soap and Soap-Bubble Films

Keiji Matsumura and Masaaki Shiono

はじめに

先の論文(松村・塩野, 2012, 2013, 投稿中)では、しゃぼん玉の膜厚がマ ルチチャンネル分光器を用いた干渉スペクトルの測定により正確に決定できる ことを報告した。そこでは、測定した干渉スペクトルに対して、膜厚をパラメー タにしたシミュレーションスペクトルをフィットさせることにより、膜厚を簡 単に高精度に決定できることを示した。

本稿では、先の論文の理論的背景を明らかにすることと、理論と実験の間に 生じるずれ(誤差)について考察することを目的とする。具体的には、しゃぼ ん玉の干渉スペクトルのシミュレーションを行うために用いた実験式を理論的 に導出することと、シミュレーションスペクトルと実測スペクトルの間に生じ るずれとその補正の仕方について考察することを目的とする。

シミュレーションに用いた干渉スペクトルの式

ここでは、しゃぼん玉の干渉スペクトルのシミュレーション解析に用いた数 式について簡単に解説する。最初に、厚さ*d*のセッケン膜に垂直に入射した 光が透過した後に起きる干渉について考える。この場合、光の波長λが次式の 関係を満たすとき,干渉縞は明るくなる。

光路差 =
$$2n_s d = m\lambda$$
 (1)

ここで, m は干渉次数で, m=0, 1, 2, 3, …で示される整数値をとる。n_s は膜 の屈折率で光の波長に緩やかに依存する変数であるが, 定数として扱う場合も ある (n_s の s は soap film の s から付けた)。可視分光ではセッケン膜の透過率 T の波長依存性を測定することになるが, 測定される干渉スペクトルは, (1)式 を満たすとき透過率が大きくなるので波のようにうねりを生じ, 次式で示す三 角関数で近似できる。

$$T = a_1 \cos\left(\frac{4\pi n_s d}{\lambda}\right) + b_1 \tag{2}$$

ここで、 $a_t \ge b_t$ は、それぞれ、フリンジ(fringe)の振幅と平均の透過率で、 測定領域でセッケン液の光の吸収が無ければ、 $a_t+b_t=1 \ge cca$ 。しゃぼん玉 の測定の場合は、透過光は薄膜を2回透過するが、この場合でも膜が均一にで きていれば、(2)式は成立する。ともかく、実験結果に合わせて、 $a_t \ge b_t \ge n_s d$ の値を適当に選ぶことにより、(2)式を用いて透過光の干渉スペクトルのシ ミュレーションを行うことができる。

つづいて,厚さ d のセッケン膜に垂直に入射した光が膜の外側や内側の界 面で反射されて,入射光側に帰ってくる光に生じる干渉について考える。この 場合,膜の外側での反射は,屈折率が小さい媒質(空気)から大きい媒質(膜) に入射するときの界面での反射となり,固定端での反射になるので,位相がπ だけ(半波長分)変化する。それゆえ光の波長λが,(1)式の関係を満たすと き,今度は干渉縞が暗くなる。反射光の可視分光では,セッケン膜の反射率 R の波長依存性を測定することになるが,測定される干渉スペクトルは,(1)式 を満たすとき反射率が小さくなるので,次式で近似できる。

$$R = a_{\rm r} \cos\left(\frac{4\pi n_{\rm s} d}{\lambda} + \pi\right) + b_{\rm r} \tag{3}$$

ここで, *a*_r と *b*_r は, それぞれ, フリンジの振幅と平均の反射率で, 測定領域 でセッケン液に対する光の吸収や蛍光の影響が無ければ, *b*_r-*a*_r=0となる。 (3)式はしゃぼん玉の測定の場合でも成立する。実験結果に合わせて, *a*_rと*b*_r と *n*_s*d* の値を適当に選ぶことにより, (3)式を用いて反射光の干渉スペクトル に対するシミュレーションを行うことができる。反射光に対する(3)式は, 透 過光に対する(2)式に類似した形をしているが, 両者は位相がπだけ異なり, このことは膜の外側と内側における固定端の反射と自由端の反射の違いに起因 する。

本稿は,(2)式および(3)式を理論的に導出しすることと,(2)式あるいは(3) 式と実測スペクトルの間に生じるずれ(誤差)とその補正の仕方を考察するこ とを目的としている。

干渉スペクトルの理論式の導出

ここでは、干渉スペクトルの実験式を物理光学の基礎的な数式を用いて導出 し、(2)式および(3)式の表記に用いた*a*,*b*,*a*, および*b*,が屈折率を用いて 具体的にどのような数式で表現されるかを明らかにする。ここでの導出にあ たっては、物理光学の入門書(谷田貝, 2010, 69-70)を参考にした。

A. 界面に入射する光と反射光および透過光の関係

いま,角周波数ωの光波(光)iが屈折率 n₀の媒質中を x 方向に進んでい るとする。このとき,時間 t における光 i の電界ベクトル E_i(x, t) は次式で表 現される。

$$E_{i}(x, t) = A_{i} \mathrm{e}^{-i\omega t + ik_{0}x} \tag{4}$$

ここで, *A*_iは振幅であり, *k*₀は波数で, 真空中の波長λを用いて次式で定義 される。

$$k_0 = \frac{2\pi n_0}{\lambda} \tag{5}$$

また、 ω と λ と真空中の光速度 c の間には次式の関係が成立する。

$$\omega = \frac{2\pi c}{\lambda} \tag{6}$$

光の強度は、電界ベクトルの振幅の絶対値の二乗に比例する量であるが、比例 定数を1として議論を進めると、入射光iの強度Lは次式で表される。

$$I_{i} = |E_{i}|^{2} = E_{i}^{*}E_{i} = A_{i}^{2}$$
(7)

ここで、*は複素共役であることを示す。

つづいて,図1に示すように,屈折率 n_sの光の吸収の無い透明な媒質でで きた膜の外や内で起きる光の入射や反射・透過について考える。図1の左側に 示すように,光が膜に垂直に入射して膜の表面での反射と膜の中への透過が同 時に起きる場合,入射光iの電界ベクトルは(4)式で示されるが,反射光 R と 透過光 T の電界ベクトル E_R と E_T は,それぞれ,次式で表現される。

$$E_{\rm R}(\mathbf{x}, t) = A_{\rm R} \mathrm{e}^{-i\omega t - ik_0 \mathbf{x}} \tag{8}$$

$$E_{\rm T}(\mathbf{x}, t) = A_{\rm T} \mathrm{e}^{-i\omega t + iks\mathbf{x}} \tag{9}$$

ここで、A_RとA_Tは振幅であり、k_aは次式で定義される波数である。

$$k_{\rm s} = \frac{2\pi n_{\rm s}}{\lambda} \tag{10}$$

光波が境界面に入射して反射光と透過光になるとき,境界面の前後で光波の 変位は滑らか変化するはずであるから,光波の変位の連続性と光波の変位の微 係数の連続性が保たれているはずである。それゆえ,境界面を *x* 軸の原点にと るとき,次の 2 つの式が成り立つ。

図1 膜の表面と膜の中の界面への光の入射と光の反射・透過

$$E_{i}(0, t) + E_{R}(0, t) = E_{T}(0, t)$$
(11)

$$\left[\frac{\partial \left(E_{\rm i}+E_{\rm R}\right)}{\partial x}\right]_{x=0} = \left[\frac{\partial E_{\rm T}}{\partial x}\right]_{x=0}$$
(12)

これらの式に、(4)、(8)、および(9)式を代入すると次式が得られる。

$$A_{\rm i} + A_{\rm R} = A_{\rm T} \tag{13}$$

$$n_0 A_{\rm i} - n_0 A_{\rm R} = n_{\rm s} A_{\rm T} \tag{14}$$

境界面での振幅反射率 r と振幅透過率 t は, (13) 式と(14) 式から次のように表 される。

$$r = \frac{A_{\rm R}}{A_{\rm i}} = \frac{n_0 - n_{\rm s}}{n_{\rm s} + n_0} \tag{15}$$

$$t = \frac{A_{\rm T}}{A_{\rm i}} = \frac{2n_0}{n_{\rm s} + n_0} \tag{16}$$

次に膜の中での光の反射と透過を考える。図1の右側に示すように、屈折率 n_s の膜の内側にある光が屈折率 n_0 の媒質との境界面に垂直に入射して、膜の中への反射と膜の外への透過が同時に起きる場合、入射光i′、反射光 R′、および透過光 T′の電界ベクトル E_r 、 E_R 、および E_T は、それぞれ、次の式で表される。

$$E_{i'}(x, t) = A_{i'} e^{-i\omega t + ik_s x}$$

$$\tag{17}$$

$$E_{\mathbf{R}'}(\mathbf{x}, t) = A_{\mathbf{R}'} \mathrm{e}^{-i\omega t - ik_{\mathbf{s}}\mathbf{x}}$$
(18)

$$E_{\mathrm{T}'}(\mathbf{x}, t) = A_{\mathrm{T}'} \mathrm{e}^{-i\omega t + ik_0 \mathbf{x}}$$
⁽¹⁹⁾

膜の中での光の反射と透過の場合も、境界面での光波の変位の連続性が要請されるので、(11)式と(12)式に相当する条件式が成立して、次式が導出される。

$$A_{\mathbf{i}'} + A_{\mathbf{R}'} = A_{\mathbf{T}'} \tag{20}$$

$$n_{s}A_{i'} - n_{s}A_{R'} = n_{0}A_{T'} \tag{21}$$

境界面での振幅反射率 r'と振幅透過率 t'は,(20)式と(21)式から次のように 表される。

$$r' = \frac{A_{\rm R'}}{A_{\rm i'}} = \frac{n_{\rm s} - n_0}{n_{\rm s} + n_0} \tag{22}$$

$$t' = \frac{A_{\rm T'}}{A_{\rm i'}} = \frac{2n_{\rm s}}{n_{\rm s} + n_0} \tag{23}$$

ここまでの数式の導出により、干渉スペクトルを理論的に扱うための準備が すべて整った。膜の外で入射する光の反射率rと透過率tは(15)式と(16)式で 与えられ、膜の中での光の反射率r'と透過率t'は(22)式と(23)式で与えられ る。また、これらの式から次の2つの関係式が成立することがわかる。

$$r^2 + tt' = 1$$
 (24)

$$r = -r' \tag{25}$$

(25)式の関係は、膜の外での反射と膜の中での反射では、電界ベクトルの位相 が異なることを意味する。 n_0 を大気の屈折率とし、 n_s をセッケン膜などの薄 膜の屈折率としているので、 $n_s > n_0$ となり、(15)式からr < 0、(22)式からr' > 0が成立する。振幅反射率rが負になることは、屈折率が小さい媒質から大きい 媒質へ入射するときの界面での反射は固定端反射になり、反射された光は位相 が π (半波長だけ)ずれることを意味する。一方、振幅反射率r'が正になる ことは、屈折率が大きい媒質から小さい媒質へ入射するときの界面での反射は 自由端反射になり、反射された光は位相が変化しないことを意味する。

B. 薄膜の干渉スペクトルの理論的扱い

薄膜で起きる干渉について考えるための準備として、図2に示す光iの入射

図2 膜の干渉に関係した光の入射と光の反射・透過

と続いて起きるいくつかの反射と透過について考える。このとき, 膜の外から 入射する光の反射と透過に対しては(15)式と(16)式で定義される r と t を用 い, 膜の中での光の反射と透過に対しては(22)式と(23)式で定義される r' と t'を用いてそれぞれの光波の振幅を考えることにする。

最初に光iが膜の表面に垂直に入射して透過光Aと反射光Bが生じる場合 について考える。このとき、それぞれの光波の振幅の間には次式の関係が成り 立つ。

 $A_{\rm A} = tA_{\rm i} \tag{26}$

 $A_{\rm B} = rA_{\rm i} = -r'A_{\rm i} \tag{27}$

ここで、(27)式の導出には(25)式を用いた。

膜の中の光Aが膜の右側の界面に入射して透過光Cと反射光Dが生じると する。このとき、それぞれの光波の振幅の間には次式の関係が成り立つ。

$$A_{\rm C} = t'A_{\rm A} = tt'A_{\rm i} \tag{28}$$

$$A_{\rm D} = r'A_{\rm A} = r'tA_{\rm i} \tag{29}$$

膜の中の光Dが膜の左側の界面に入射して透過光Fと反射光Gが生じると する。このとき、それぞれの光波の振幅の間には次式の関係が成り立つ。

$$A_{\rm F} = t'A_{\rm D} = r'tt'A_{\rm i} \tag{30}$$

$$A_{\rm G} = r'A_{\rm D} = r'r'tA_{\rm i} \tag{31}$$

膜の中の光Gが膜の右側の界面に入射して透過光Hと反射光を生じるとする(このときの反射光は今後の議論には使用しない)。このとき,光波Hの振幅には次式の関係が成り立つ。

$$A_{\rm H} = t'A_{\rm G} = r'r'tt'A_{\rm i} \tag{32}$$

ここまでの式で,干渉スペクトルを考えるための準備ができた。つづいて, 薄膜における干渉について,具体的に考察する。

B-1 反射光の干渉スペクトル

ここでは、図2において入射した光iが厚さdの薄膜の界面で反射されると きに生じる干渉について考える。この場合、膜の外の界面で反射した光Bと 膜の中の界面で反射して出てくる光Fが重なり合って生じる干渉になる。そ れゆえ、薄膜での反射光の干渉を考える場合は、光Bと光Fの電界ベクトル の重ね合わせを考えれば良いことになる。

光Bの電界ベクトルは、(8)式と類似した形の次式で表される。

$$E_{\rm B}(x, t) = A_{\rm B} \mathrm{e}^{-i\omega t - ik_0 x} \tag{33}$$

この式に(27)式、(4)式を適用していくと、次式のように変形される。

$$E_{\rm B}(x, t) = -r'A_{\rm i}e^{-i\omega t - ik_0 x}$$

= $-r'E_{\rm i}(-x, t)$
= $\alpha_{\rm R}e^{-i\pi}E_{\rm i}(-x, t)$ (34)

ただし、*a*Rは次式で定義する。

$$a_{\rm R} = r' \tag{35}$$

光Fの光路は光Bに比べて厚さ*d*の膜の中を往復する分増えているから, 光路差は 2*n*_s*d* となり,位相差は次式で表される。

位相差 =
$$2\pi \frac{2n_s d}{\lambda} = \frac{4\pi n_s d}{\lambda}$$
 (36)

光Fの電界ベクトルは、(33)式と類似した形の式に位相差を考慮するので、次 式で表される。

$$E_{\rm F}(x, t) = A_{\rm F} {\rm e}^{i\frac{4\pi n_{sd}}{\lambda}} {\rm e}^{-i\omega t - ik_0 x}$$
(37)

この式に (30)式と(4)式を代入すると, 次式が得られる。

$$E_{\rm F}(\mathbf{x}, t) = \mathbf{r}' t t' A_{\rm i} e^{i \frac{4\pi n_s d}{\lambda}} e^{-i\omega t - ik_0 \mathbf{x}}$$
$$= \beta_{\rm R} e^{i \frac{4\pi n_s d}{\lambda}} E_{\rm i}(-\mathbf{x}, t)$$
(38)

ただし, β_R は次式で定義する。

$$\beta_{\rm R} = r'tt' \tag{39}$$

よって,光Bと光Fの電界ベクトルの重ね合わせによる干渉は,(34)式と(38)式を用いると次式のように表される。

 $E_{\rm B}(\mathbf{x}, t) + E_{\rm F}(\mathbf{x}, t) = \alpha_{\rm R} \mathrm{e}^{-i\pi} E_{\rm i}(-\mathbf{x}, t) + \beta_{\rm R} \mathrm{e}^{i\frac{4\pi n_{\rm S} d}{\lambda}} E_{\rm i}(-\mathbf{x}, t)$ $= \left(\alpha_{\rm R} \mathrm{e}^{-i\pi} + \beta_{\rm R} \mathrm{e}^{i\frac{4\pi n_{\rm S} d}{\lambda}}\right) E_{\rm i}(-\mathbf{x}, t)$

$$= \left\{ \alpha_{\rm R} + \beta_{\rm R} {\rm e}^{i \left(\frac{4\pi n s d}{\lambda} + \pi\right)} \right\} {\rm e}^{-i\pi} E_{\rm i} \left(-x, t \right)$$
(40)

反射光の強度 *I*_R は, (40)式, (4)式, (7)式, およびオイラーの公式を用いて 次式で表される。

$$\begin{split} I_{\rm R} &= |E_{\rm B}\left(x,\,t\,\right) + E_{\rm F}\left(x,\,t\,\right)|^2 \\ &= \{E_{\rm B}\left(x,\,t\,\right) + E_{\rm F}\left(x,\,t\,\right)\}^* \{E_{\rm B}\left(x,\,t\,\right) + E_{\rm F}\left(x,\,t\,\right)\} \\ &= \left\{a_{\rm R} + \beta_{\rm R} \mathrm{e}^{-i\left(\frac{4\pi n_{\rm s} d}{\lambda} + \pi\right)}\right\} \left\{a_{\rm R} + \beta_{\rm R} \mathrm{e}^{i\left(\frac{4\pi n_{\rm s} d}{\lambda} + \pi\right)}\right\} A_{\rm i}^2 \\ &= \left\{a_{\rm R}^2 + \beta_{\rm R}^2 + 2\alpha_{\rm R}\beta_{\rm R} \cos\left(\frac{4\pi n_{\rm s} d}{\lambda} + \pi\right)\right\} I_{\rm i} \\ &= \left\{a_{\rm r} \cos\left(\frac{4\pi n_{\rm s} d}{\lambda} + \pi\right) + b_{\rm r}\right\} I_{\rm i} \end{split}$$
(41)

ただし, *a*_r と *b*_r は次式で定義する。

$$a_{\rm r} = 2\alpha_{\rm R}\beta_{\rm R} \tag{42}$$

$$b_{\rm r} = \alpha_{\rm R}^2 + \beta_{\rm R}^2 \tag{43}$$

反射率 R は(41)式から次式で表される。

$$R = \frac{I_{\rm R}}{I_{\rm i}} = a_{\rm r} \cos\left(\frac{4\pi n_{\rm s} d}{\lambda} + \pi\right) + b_{\rm r} \tag{44}$$

よって、この式により反射光の干渉スペクトルの解析に用いた(3)式を理論的 に導出できた。

B-2 透過光の干渉スペクトルー薄膜が1枚の場合

ここでは、図2において入射した光iが厚さdの薄膜を透過するときに生じ る干渉について考える。この場合、膜をそのまま透過してきた光Cと、膜の 出口側と入口側で反射した後に透過してきた光Hの間の干渉になる。それゆ え、薄膜での透過光の干渉を考える場合は、光Cと光Hの電界ベクトルの重 ね合わせを考えれば良いことになる。

光Cの電界ベクトルは、(19)式と類似した形の次式で表される。

$$E_{\rm C}(\mathbf{x},\,t) = A_{\rm C} \mathrm{e}^{-i\omega t + ik_0 \mathbf{x}} \tag{45}$$

この式に(28)式と(4)式を適用していくと、次式のように変形される。

 $E_{\rm C}(x, t) = tt' A_{\rm i} {\rm e}^{-i\omega t + ik_0 x}$

$$= \alpha_{\rm T} E_{\rm i} \left(x, \ t \right) \tag{46}$$

ただし, ar は次式で定義する。

$$\alpha_{\rm T} = tt' \tag{47}$$

光日の光路は光Cに比べて厚さ*d*の膜の中を往復する分増えているから, 光路差は 2n_s*d* となり,位相差は(36)式で表される。光日の電界ベクトルは, (45)式と類似した形の式に位相差を考慮するので,次式で表される。

$$E_{\rm H}(x, t) = A_{\rm H} {\rm e}^{i\frac{4\pi nsd}{\lambda}} {\rm e}^{-i\omega t + ik_0 x}$$
(48)

この式に(32)式と(4)式を代入すると、次式が得られる。

$$E_{\rm H}(x, t) = r'r'tt'A_{\rm i}e^{i\frac{4\pi n_s d}{\lambda}}e^{-i\omega t + ik_0 x}$$
$$= \beta_{\rm T}e^{i\frac{4\pi n_s d}{\lambda}}E_{\rm i}(x, t)$$
(49)

ただし, βτ は次式で定義する。

$$\beta_{\rm T} = r'r'tt' \tag{50}$$

よって,光Cと光Hの電界ベクトルの重ね合わせは,(46)式と(49)式を用い ると次式のように表される。

$$E_{\rm C}(\mathbf{x}, t) + E_{\rm H}(\mathbf{x}, t) = \left(\alpha_{\rm T} + \beta_{\rm T} {\rm e}^{i\frac{4\pi n_{\rm s} d}{\lambda}}\right) E_{\rm i}(\mathbf{x}, t)$$
(51)

膜を1回透過したときの透過光の強度*I*^{TI}は,(51)式,(4)式,(7)式,および オイラーの公式を用いて次式で表される。

$$I_{\text{T1}} = |E_{\text{C}}(x, t) + E_{\text{H}}(x, t)|^{2}$$

$$= \{E_{\text{C}}(x, t) + E_{\text{H}}(x, t)\}^{*}\{E_{\text{C}}(x, t) + E_{\text{H}}(x, t)\}$$

$$= \left(\alpha_{\text{T}} + \beta_{\text{T}} e^{-i\frac{4\pi n_{sd}}{\lambda}}\right) \left(\alpha_{\text{T}} + \beta_{\text{T}} e^{i\frac{4\pi n_{sd}}{\lambda}}\right) A_{i}^{2}$$

$$= \left\{\alpha_{\text{T}}^{2} + \beta_{\text{T}}^{2} + 2\alpha_{\text{T}}\beta_{\text{T}}\cos\left(\frac{4\pi n_{s}d}{\lambda}\right)\right\} I_{i}$$

$$= \left\{a_{\text{t1}}\cos\left(\frac{4\pi n_{s}d}{\lambda}\right) + b_{\text{t1}}\right\} I_{i}$$
(52)

ただし, au と bu は次式で定義する。

$$a_{\rm t1} = 2\alpha_{\rm T}\beta_{\rm T} \tag{53}$$

$$b_{\rm t1} = \alpha_{\rm T}^2 + \beta_{\rm T}^2 \tag{54}$$

膜を1回透過した光の透過率T₁は(52)式から次式で表される。

$$T_{1} = \frac{I_{\text{T}1}}{I_{\text{i}}} = a_{\text{tl}} \cos\left(\frac{4\pi n_{\text{s}} d}{\lambda}\right) + b_{\text{tl}}$$
(55)

よって、この式により透過光の干渉スペクトルの解析に用いた(2)式と同じ形 の式を理論的に導出できた。

B-3 透過光の干渉スペクトルー薄膜が2枚の場合

しゃぼん玉の透過光の干渉スペクトルを理論的に扱うためには、2枚の薄膜 を透過する光に対して起きる干渉について考察しないといけない。ここでは、 しゃぼん玉の膜が均一にできている場合について考えることにするので、図2 に相当する膜が2つあるものとして議論する。しゃぼん玉の1つ目の薄膜を透 過した光が2つ目の薄膜に入射するとき、この入射する光の電界ベクトル E_{Π} は、(51)式にしゃぼん玉の直径に相当する光路を考慮した式で表現できるが、 この光路の表現は2つ目の膜の干渉には影響を与えないので、省略することが できる。よって、 E_{Π} として次式を用いることができる。

 $E_{\text{T1}} = E_{\text{C}}(x, t) + E_{\text{H}}(x, t)$

 $= \left(\alpha_{\rm T} + \beta_{\rm T} {\rm e}^{i\frac{4\pi n_{\rm s}d}{\lambda}}\right) E_{\rm i}\left(x,\,t\,\right) \tag{56}$

この En が2つ目の膜に入射した後に透過して出てきた光がしゃぼん玉の透過 光の干渉スペクトルとして測定される。この場合,2つ目の膜をそのまま透過 してきた光 C2 と,2つ目の膜の出口側と入口側で反射した後に透過してきた 光 H2 の間の干渉になる。それゆえ、しゃぼん玉の透過光の干渉を考える場合 は、光 C2 と光 H2 の電界ベクトルの重ね合わせを考えれば良いことになる。

光 C2 の電界ベクトルは、(46)式の $E_i(x, t)$ を $E_{TI}(x, t)$ で置き換えることにより次式で表される。

$$E_{C2}(x, t) = \alpha_{T} E_{T1}(x, t)$$
(57)

同様にして,光H2の電界ベクトルは,(49)式の $E_i(x, t)$ を $E_{T1}(x, t)$ で置き換えることにより次式で表される。

$$E_{\rm H2}(\mathbf{x},\,t) = \beta_{\rm T} {\rm e}^{i\frac{4\pi n_s d}{\lambda}} E_{\rm T1}(\mathbf{x},\,t) \tag{58}$$

よって、光C2と光H2の電界ベクトルの重ね合わせは、(57)、(58)、および (56)式を用いると次式のように表される。

$$E_{C2}(x, t) + E_{H2}(x, t) = \alpha_{T} E_{T1}(x, t) + \beta_{T} e^{i\frac{4\pi n s d}{\lambda}} E_{T1}(x, t)$$
$$= \left(\alpha_{T} + \beta_{T} e^{i\frac{4\pi n s d}{\lambda}}\right) E_{T1}(x, t)$$
$$= \left(\alpha_{T} + \beta_{T} e^{i\frac{4\pi n s d}{\lambda}}\right) \left(\alpha_{T} + \beta_{T} e^{i\frac{4\pi n s d}{\lambda}}\right) E_{i}(x, t)$$
$$= \left(\alpha_{T}^{2} + 2\alpha_{T} \beta_{T} e^{i\frac{4\pi n s d}{\lambda}} + \beta_{T}^{2} e^{i\frac{8\pi n s d}{\lambda}}\right) E_{i}(x, t)$$
(59)

2枚の薄膜を透過したときの透過光の強度 In は、(59)式、(4)式、(7)式、お よびオイラーの公式を用いて次式で表される。

$$I_{T2} = |E_{C2}(x, t) + E_{H2}(x, t)|^{2}$$

$$= \{E_{C2}(x, t) + E_{H2}(x, t)\}^{*}\{E_{C2}(x, t) + E_{H2}(x, t)\}$$

$$= \left(\alpha_{T}^{2} + 2\alpha_{T}\beta_{T}e^{-i\frac{4\pi n_{s}d}{\lambda}} + \beta_{T}^{2}e^{-i\frac{8\pi n_{s}d}{\lambda}}\right)\left(\alpha_{T}^{2} + 2\alpha_{T}\beta_{T}e^{i\frac{4\pi n_{s}d}{\lambda}} + \beta_{T}^{2}e^{i\frac{8\pi n_{s}d}{\lambda}}\right)A_{i}^{2}$$

$$= \left\{a_{t2}\cos\left(\frac{4\pi n_{s}d}{\lambda}\right) + b_{t2} + c_{t2}\cos\left(\frac{8\pi n_{s}d}{\lambda}\right)\right\}I_{i}$$
(60)

ただし、*a*₁₂, *b*₁₂, および *c*₁₂ は次式で定義する。

$$a_{t2} = 4\left(\alpha_{\mathrm{T}}{}^{3}\beta_{\mathrm{T}} + \alpha_{\mathrm{T}}\beta_{\mathrm{T}}{}^{3}\right) \tag{61}$$

$$b_{t2} = \alpha_{T}^{4} + 4\alpha_{T}^{2}\beta_{T}^{2} + \beta_{T}^{4}$$
(62)

$$c_{t2} = 2\alpha_{\rm T}^2 \beta_{\rm T}^2 \tag{63}$$

膜を2回透過した光の透過率T2は(60)式から次式で表される。

$$T_2 = \frac{I_{\text{T2}}}{I_1} = a_{12} \cos\left(\frac{4\pi n_s d}{\lambda}\right) + b_{12} + c_{12} \cos\left(\frac{8\pi n_s d}{\lambda}\right) \tag{64}$$

通常,係数 *c*¹² は, *a*¹² や *b*¹² に比べて 1 桁小さな値になるので,(64)式は次式で 近似できる。

$$T_2 \doteq a_{12} \cos\left(\frac{4\pi n_s d}{\lambda}\right) + b_{12} \tag{65}$$

よって、この式により、しゃぼん玉の透過光の干渉スペクトルの解析に用いた (2)式と同じ形の式を理論的に導出できた。

B-4 干渉スペクトルの理論式のまとめ

今回導出した干渉スペクトルの理論式を式の番号と共に表1と表2にまとめ て掲載する。表1には、最初に振幅反射率と振幅透過率の数式を示し、つづい て反射光の干渉スペクトルに関係した数式を示した。表2には、薄膜を1回透 過する場合(セッケン膜の場合)と薄膜を2回透過する場合(しゃぼん玉の場 合)の透過光の干渉スペクトルに関係した数式を示した。図3には、表1と 表2の変数や係数が、大気の屈折率 n₀を1に固定して薄膜の屈折率 n₆を1か

振幅反射率	$r = \frac{n_0 - n_s}{n_s + n_0}$	(15)	
	$r' = \frac{n_s - n_0}{n_s + n_0}$	(22)	
振幅透過率	$t = \frac{2n_0}{n_s + n_0}$	(16)	
	$t' = \frac{2n_s}{n_s + n_0}$	(23)	
補助パラメータ	$lpha_{ m R}=r'$	(35)	
	$eta_{ ext{R}}=r'tt'$	(39)	
反射光の干渉スペクトル			
	$R = a_{\rm r} \cos\left(\frac{4\pi n_{\rm s} d}{\lambda} + \pi\right) + b_{\rm r}$	(3), (44)	
	$a_{\rm r} = 2 \alpha_{\rm R} \beta_{\rm R}$	(42)	
	$b_{ m r}=lpha_{ m R}{}^2+eta_{ m R}{}^2$	(43)	

表1 反射光の干渉スペクトルに関係する数式

ら 2.5 まで変化させたとき、どのように変化するかを 4 つのグラフに分けて掲示した。

図 3-a は, 膜に垂直に入射する光に対する振幅反射率 r と振幅透過率 t お よび膜の中の光に対する振幅反射率 r'と振幅透過率 t'の変化のようすを 示す。

図 3-b は、反射光の干渉スペクトルの理論式に現れる係数 a_r , $b_r \ge b_r - a_r$ のグラフを示す。この図から、干渉フリンジ強度は屈折率 n_s の増加と共に大きくなることと、 $b_r - a_r = 0$ が良い近似であることがわかる。

図 3-c は、1 枚の薄膜に生じる透過光の干渉スペクトルの理論式に現れる 係数 a_{u} 、 b_{u} と a_{u} + b_{u} のグラフを示す。この図から、干渉フリンジ強度は屈折 率 n_{s} の増加と共に大きくなることと、屈折率 n_{s} が2までは、 a_{u} + b_{u} =1が良 い近似であることがわかる。

図 3-d は、薄膜が2 枚重なっているときに生じる透過光の干渉スペクトルの式に現れる係数 a_{12} 、 b_{12} と $a_{12}+b_{12}$ のグラフを示す。この図から、干渉フリンジ強度は屈折率 n_s の増加と共に大きくなることと、屈折率 n_s が 1.7 までは、

表2 透過光の干渉スペクトルに関係する数式

補助パラメータ	$\alpha_{\mathrm{T}} = tt'$	(47)	
	$eta_{ ext{T}}=r'r'tt'$	(50)	
透過光の干渉スペクト	\mathcal{W} $(j=1, 2)$		
	$T_j = a_{\mathrm{t}j} \cos\left(\frac{4\pi n_{\mathrm{s}} d}{\lambda}\right) + b_{\mathrm{t}j}$	(2), (55), (65)	
セッケン膜の場合の係	数		
	$a_{\mathrm{tl}} = 2 \alpha_{\mathrm{T}} \beta_{\mathrm{T}}$	(53)	
	$b_{\mathrm{t1}} = lpha_{\mathrm{T}}^2 + eta_{\mathrm{T}}^2$	(54)	
しゃぼん玉の膜の場合	の係数		
	$a_{t2} = 4\left(\alpha_{T}{}^{3}\beta_{T} + \alpha_{T}\beta_{T}{}^{3}\right)$	(61)	
	$b_{t2} = \alpha_{\mathrm{T}}^{4} + 4\alpha_{\mathrm{T}}^{2}\beta_{\mathrm{T}}^{2} + \beta_{\mathrm{T}}^{4}$	(62)	

図3 表1と表2に出てくるパラメータの屈折率依存性(横軸:屈折率 n_s)

 $a_{12}+b_{12}=1$ が良い近似であることがわかる。この図には、(63)式で定義される c_{12} のグラフも示している。 c_{12} は、 a_{12} や b_{12} に比べて小さな値になるので、(65) 式が良い近似であることがわかる。この図の a_{12} と図 3-cの a_{11} を比べると、 n_s が小さいときは a_{12} の値が約2倍の大きさになっている。これらのことから、膜

厚 d の 2 枚の膜を透過した光に起きる干渉は, 膜が 1 枚増えた分, 強度が大 きくなると同時に, (64)式の第 3 項に示すように, 膜厚 2d の膜に相当する干 渉が弱いながらも生じることがわかる。

C. 干渉スペクトルの理論式と測定スペクトルの間のずれに対する補正

ここまでの議論では、薄膜の膜厚の不均一性の問題や、測定装置の分解能の 問題については触れなかった。先の論文(松村・塩野,2013,投稿中)では、 (2)式あるいは(3)式を用いて描いたシミュレーションスペクトルは、実測スペ クトルのフリンジの周期は良く再現するが、強度は短波長側で再現しないこと を示していた。フリンジの強度まで再現するシミュレーションスペクトルを描 くためには、膜厚の不均一性や測定装置の分解能の問題まで考慮しないといけ ない。この節においては、これらの問題に対する補正の仕方を誤差論的な手法 を用いて考察する。

透過光の干渉スペクトルに対する(2)式も,反射光の干渉スペクトル対する (3)式も,基本的に同じ形をした三角関数なので,測定誤差などについて議論 するときは同じように扱うことができる。そこで,ここでは(2)式を用いて,フ リンジの強度の分解能依存性や膜の均一度依存性について考察する。

いま,関数f(x)が $x = \theta$ のとき極値を持つとする。f(x)を $x = \theta$ のまわりで テイラー展開すると次式となる。

$$f(x) = f(\theta) + f'(\theta)(x - \theta) + \frac{f''(\theta)}{2!}(x - \theta)^2 + \dots$$
(66)

これ以後,(66)式の3次以上の高次項をゼロと仮定して議論を進めて行く。フ リンジの式Fは,(2)式を参考にした次式で表現できるとする。

$$F = a\cos\left(\frac{4\pi n_{s}d}{\lambda}\right) + b \tag{67}$$

(67)式は,極大値*a*+*b*と極小値-*a*+*b*を持つ。ここでは,その極大値と極 小値に対して膜の不均一度や測定装置の分解能の影響を議論する。

いま, 膜厚 d の不均一度を Δd とし, 波長 λ の不均一度, 即ち, 分解能を $\Delta \lambda$ とする。最初にフリンジの極大値に対する Δd の影響を, (66)式を利用し て考察する。(67)式の膜厚 *d* による1回偏微分と2回偏微分は次のようになる(*d* による *F* の偏微分とは, *F* を構成する*d* 以外の変数を定数と見做して, *F* を*d* で微分することを意味する)。

$$\frac{\partial F}{\partial d} = -\frac{4\pi n_{\rm s}a}{\lambda} \sin\left(\frac{4\pi n_{\rm s}d}{\lambda}\right) \tag{68}$$

$$\frac{\partial^2 F}{\partial d^2} = -\frac{16\pi^2 n_s^2 a}{\lambda^2} \cos\left(\frac{4\pi n_s d}{\lambda}\right) \tag{69}$$

(67)式の極大値の条件は次式で与えられる。

$$\frac{4\pi n_{s}d}{\lambda} = \theta_{\rm M} = 2m\pi \qquad (m = 0, 1, 2, ...)$$
(70)

ここで、mは(1)式で言及した干渉次数である。 θ_{M} が(70)式を満たすとき、 $\sin\theta_{M}=0$ 、 $\cos\theta_{M}=1$ となるので、この関係を(68)式と(69)式に代入すると次式が成立する。

$$\left(\frac{\partial F}{\partial d}\right)_{\theta_{\rm M}} = 0 \tag{71}$$

$$\left(\frac{\partial^2 F}{\partial d^2}\right)_{\theta_{\rm M}} = -\frac{16\pi^2 n_{\rm s}^2 a}{\lambda^2} \tag{72}$$

(67)式に対して膜厚 *d* を変数として極大値のときの膜厚 *d*_M のまわりで(66)式 と同様の展開を行い,変形すると次式が得られる。

$$F(d) - F(d_{\rm M}) = \left(\frac{\partial F}{\partial d}\right)_{\theta_{\rm M}} (d - d_{\rm M}) + \frac{1}{2!} \left(\frac{\partial^2 F}{\partial d^2}\right)_{\theta_{\rm M}} (d - d_{\rm M})^2$$
(73)

ここで, (73)式を誤差論的に扱うことにする。(73)式の左辺の $F(d) - F(d_M)$ を膜厚dが関与するフリンジの強度Fの変動 ΔF_d で置き換え, $d - d_M \epsilon \Delta d$ で置き換えると次式が得られる。

$$\Delta F_d = \left(\frac{\partial F}{\partial d}\right)_{\theta_{\rm M}} \Delta d + \frac{1}{2!} \left(\frac{\partial^2 F}{\partial d^2}\right)_{\theta_{\rm M}} \Delta d^2 \tag{74}$$

(74)式に(71)式と(72)式を代入すると次式が得られる。

$$\Delta F_d = -\frac{8\pi^2 n_s^2 a}{\lambda^2} \Delta d^2 \tag{75}$$

この式から、 膜の不均一度 Δd は、 フリンジの 極大値を小さく するように 影響 することがわかる。

つづいて、同様な手法を用いてフリンジの極大値の分解能△λ に対する依存 性について考える。(67)式の波長λによる偏微分は次のようになる。

$$\frac{\partial F}{\partial \lambda} = \frac{4\pi n_{\rm s} da}{\lambda^2} \sin\left(\frac{4\pi n_{\rm s} d}{\lambda}\right) \tag{76}$$

$$\frac{\partial^2 F}{\partial \lambda^2} = -\frac{8\pi n_{\rm s} da}{\lambda^3} \sin\left(\frac{4\pi n_{\rm s} d}{\lambda}\right) - \frac{16\pi^2 n_{\rm s}^2 d^2 a}{\lambda^4} \cos\left(\frac{4\pi n_{\rm s} d}{\lambda}\right) \tag{77}$$

θ_Mが(70)式を満たすとき、(76)式と(77)式は次の値を持つ。

$$\left(\frac{\partial F}{\partial \lambda}\right)_{\theta_{\rm M}} = 0 \tag{78}$$

$$\left(\frac{\partial^2 F}{\partial \lambda^2}\right)_{\theta_{\rm M}} = -\frac{16\pi^2 n_{\rm s}^2 d^2 a}{\lambda^4}$$
(79)

(67) 式に対して波長λを変数として極大値のときの波長λMのまわりで(66) 式 と同様の展開を行い、変形すると次式が得られる。

$$F(\lambda) - F(\lambda_{\rm M}) = \left(\frac{\partial F}{\partial \lambda}\right)_{\theta_{\rm M}} (\lambda - \lambda_{\rm M}) + \frac{1}{2!} \left(\frac{\partial^2 F}{\partial \lambda^2}\right)_{\theta_{\rm M}} (\lambda - \lambda_{\rm M})^2 \tag{80}$$

ここで、(80)式を誤差論的に扱うことにする。(80)式の左辺の $F(\lambda) - F(\lambda_M)$ を波長 λ の不均一度(分解能)が関与するフリンジの強度Fの変動 ΔF_{λ} で置 き換え、 $\lambda - \lambda_{M}$ を $\Delta \lambda$ で置き換えると次式が得られる。

$$\Delta F_{\lambda} = \left(\frac{\partial F}{\partial \lambda}\right)_{\theta_{\mathrm{M}}} \Delta \lambda + \frac{1}{2!} \left(\frac{\partial^2 F}{\partial \lambda^2}\right)_{\theta_{\mathrm{M}}} \Delta \lambda^2 \tag{81}$$

(81)式に(78)式と(79)式を代入すると次式が得られる。

$$\Delta F_{\lambda} = -\frac{8\pi^2 n_s^2 d^2 a}{\lambda^4} \Delta \lambda^2 \tag{82}$$

この式から、装置の分解能が低下すると、フリンジの極大値が小さくなること がわかる。

ここまでの議論で、(67)式の極大値に対する膜厚の不均一度 Δd や分解能 $\Delta \lambda$ の影響をそれぞれ別々に考察して、(75)式と(82)式を得た。

実測スペクトルにおいては $\Delta d \geq \Delta \lambda$ の影響が同時に極大値に現れてくるの で、 $\Delta d \geq \Delta \lambda$ の影響を同時に取り入れたときの極大値の変動 ΔF が $\Delta F_d \geq \Delta F_\lambda$ を用いてどのように表されるかを考えないといけない。もし、 $\Delta d \geq \Delta \lambda$ の符号によって $\Delta F_d \geq \Delta F_\lambda$ の符号も変わるなら、 ΔF は $\Delta F_d \geq \Delta F_\lambda$ の2乗和 の平方根で表されるはずである。しかし、(75)式や(82)式からもわかる通り、 $\Delta F_d \approx \Delta F_\lambda$ は $\Delta d \approx \Delta \lambda$ の符号に依存しない。この場合は、 $\Delta d \geq \Delta \lambda$ の両方 を同時に考慮した極大値の変動 ΔF は(75)式と(82)式の単純な加算になり、次 式で表現される。

$$\Delta F = \Delta F_d + \Delta F_{\lambda} = -\frac{8\pi^2 n_s^2 a}{\lambda^2} \Delta d^2 - \frac{8\pi^2 n_s^2 d^2 a}{\lambda^4} \Delta \lambda^2$$
(83)

よって、(67)式の極大値 a + b は、膜厚の不均一度 Δd や波長の不均一度 $\Delta \lambda$ により、次のように変動する。

$$a+b \to a\left(1 - \frac{8\pi^2 n_s^2}{\lambda^2} \Delta d^2 - \frac{8\pi^2 n_s^2 d^2}{\lambda^4} \Delta \lambda^2\right) + b \tag{84}$$

この関係から, Δ*d* やΔλ の影響で極大値の値が小さくなり, 干渉フリンジの 極大値の付近は滑らかになっていることがわかる。

一方,(67)式の極小値に対して,(68)式から(83)式までの議論と同じような ことを行うと,(67)式の極小値 – a + bは, 膜厚の不均一度 Δd や波長の不均 一度 $\Delta \lambda$ により,次のように変化することを示すことができる。

$$-a+b \rightarrow -a\left(1 - \frac{8\pi^2 n_s^2}{\lambda^2} \Delta d^2 - \frac{8\pi^2 n_s^2 d^2}{\lambda^4} \Delta \lambda^2\right) + b$$
(85)

この関係と(84)の関係をまとめると、 $\Delta d \, \diamond \Delta \lambda \, d$ 干渉フリンジの振幅を小さ くするように働いていることがわかる。それゆえ、干渉フリンジの振幅*a*に 対する膜厚の不均一度 $\Delta d \, \diamond$ 波長の不均一度 $\Delta \lambda$ の依存性は、次のような置き 換で表現することができる。

$$a \to a \left(1 - \frac{8\pi^2 n_s^2}{\lambda^2} \Delta d^2 - \frac{8\pi^2 n_s^2 d^2}{\lambda^4} \Delta \lambda^2 \right)$$
(86)

この結果からわかる通り,干渉スペクトルのフリンジの強度は,膜の不均一度 や分解能が影響して短波長側で急激に弱くなることがわかる。特に分解能は波

199

長の逆数の4乗で関係するので,短波長側でフリンジの強度に大きな影響を与 える。

ここまでの結果を実際の干渉スペクトルの測定の場合に適用してみよう。薄 膜の膜厚および屈折率を、それぞれ、 $d = 2.5 \mu m$ および $n_s = 1.34$ とし、装置 の分解能を $\Delta \lambda = 2 n m$ とすると、フリンジの振幅 aは、(86)の関係を用いると、 $\lambda = 900 n m$ のとき 1%、 $\lambda = 450 n m$ のとき 9%減少することが計算から示され る。また、膜の均一度を、 $\Delta d = 0.01 \mu m$ とすると、フリンジの振幅 aは、 $\lambda =$ 900 n mのとき 2%、 $\lambda = 450 n m$ のとき 7%減少することが計算から示される。 この結果は、後で詳しく議論するが、実測スペクトルと比較して妥当なもので あることがわかる。

また,(86)の関係を用いると, 膜厚の不均一度Δ*d* が 0.05µm よりも大きく なるとフリンジが消えることを示すことができる。別の論文(松村・塩野,投 稿中)で,しゃぼん玉ができた直後や,時間が十分経過してしゃぼん玉膜が薄 くなったときに,光源の光が強く当たるポイントで反射光の干渉スペクトルの フリンジが消えたことを報告したが,その原因は膜の表面にできた 0.05µm 程 度の不均一な凸凹であることが予想できる。

ここではこれ以上議論しないが,屈折率が大きな膜の場合は膜の中で起きる 多重反射の影響も干渉スペクトルに現れてくる。多重反射についての取り扱い は,エタロン(etalon)に対するものと同じ扱いになるので数式が複雑になる。

実測スペクトルによる干渉スペクトルの理論式の検証

前の章では、しゃぼん玉やセッケン膜の干渉スペクトルの測定実験に対する いくつかの理論式を導出した。この章では、それらの理論式を実測スペクトル と比較することで、これまでの議論の妥当性を検証する。

図4に,しゃぼん玉の透過光の干渉スペクトルの測定結果とシミュレーショ ンスペクトルを示す。黒の実線がしゃぼん玉の透過光に対する実測の干渉スペ クトルで,橙の実線が色々な近似レベルのシミュレーションスペクトルである。 実測スペクトルの測定方法および測定条件は別の論文(松村・塩野,投稿中) に記載した方法を踏襲した。

図4 実測スペクトル(黒色実線)とシミュレーションスペクトル(橙色実線):

- (a) 膜厚のみを考慮した単純なシミュレーション
- (b) 屈折率の波長依存性を考慮したシミュレーション
- (c)分解能、膜の均一度、屈折率の波長依存性を考慮したシミュレーション

図 4-a には,(65)式をもとにして, *a*, *b*, および膜厚 *d* を長波長側でフィットさせたシミュレーションスペクトルを示す。短波長側でフリンジの周期と強度が,実測スペクトルからずれていることがわかる。

フリンジの周期のずれは、屈折率の波長依存性を考慮すると解消できる。一 般に、物質の屈折率は短波長になるにつれて大きくなり、その変化のようすは コーシー(Cauchy)の分散公式やセルマイヤー(Sellmeier)の分散公式で再 現できる。しゃぼん玉の干渉スペクトルの解析においては、実測スペクトルへ のフィッティングを容易にするためにこれらの分散公式の最初の2項を考慮し た次式を用いた。

$$n_{\rm s} = n_{\rm s0} \left(1 + \frac{A_{\rm s}}{\lambda^2} \right) \tag{87}$$

ここで、 n_{s0} と A_s は屈折率に関係した物質固有の定数である。膜厚の決定精度 は、(87)式の補正を行う前は±0.006 μ m であるが、補正後は精度が±0.002 μ m まで、場合によっては±0.001 μ m まで上がる。図4-bには、(87)式を考慮し てフィッティングしたシミュレーションスペクトルを示す。このとき、しゃぼ ん玉の膜厚dは、2.335 μ m となった。ここで、 n_{s0} の値として1.331を用い、 A_s として 0.0024 μ m²を用いた(松村・塩野、2013、投稿中)。図4-bのシミュ レーションスペクトルは実測スペクトルに比べて、フリンジの周期は良く再現 しているが、強度が短波長側でずれていることがわかる。

図 4-c には、(87)式だけでなく、(86)の関係も考慮したシミュレーション スペクトルを示す。このとき用いたパラメータは、 a_{12} =7.2%、 b_{2} =91.9%、 $\Delta\lambda$ =2.3nm、 Δd =0.015 μ m であるが、シミュレーションスペクトルは実測 スペクトルをフリンジの強度も含めて、良く再現していることがわかる。実測 スペクトルは、分解能 2.1nm の分光器(Ocean Optics 製 USB2000+XR1-ES) を用いて測定したが、スムージングを 8 に設定したことにより、実効分解能が 下がったので、 $\Delta\lambda$ =2.3nm は妥当な値であるといえる。また、図 4 と同時に 測定した反射光の干渉スペクトルの膜厚 d は 2.317 μ m となり、透過光の干渉 スペクトルの場合に比べて 0.018 μ m 小さな値になったので、 Δd =0.015 μ m も妥当な値であるといえる。一方、図 3-d において、屈折率が 1.34 のとき

のパラメータの値は, *a*¹²=7.8%, *b*¹²=92.0% となるが, これらの値も図4-c をフィッティングしたときのパラメータの値と良く一致している。このように, しゃぼん玉の透過光の干渉スペクトルの測定結果は,本稿の理論が正しいこと を示している。

一方,反射光の干渉スペクトルの場合は,相対的な反射率しか測定できない ので,詳細な議論はできていない。しかし,図3-bにおいて,屈折率が1.34 のときの干渉フリンジの振幅は, *a*_r=4.1% と透過光の場合の約半分の大きさ になるが,この結果は,別の論文(松村・塩野,2013,投稿中)に掲載した実 測スペクトルの強度と矛盾していないので,妥当なものといえる。

おわりに

本稿では、しゃぼん玉やセッケン膜の干渉スペクトルに対する理論的な考察 を行い、実測スペクトルを細部まで再現する理論式を導出した。

しゃぽん玉などの薄膜の干渉に関しては、高校物理のいくつかの教科書に詳 しい解説が出ている。その中で、数研出版の物理の教科書(國友正和ほか10 名、2013:187-191)においては、「光の干渉と回折」の単元の中の「薄膜に よる光の干渉」、「くさび形空気層における光の干渉」、および「ニュートンリ ング」の項目の中で、屈折率が大きい媒質から小さい媒質へ入射するときの反 射は、自由端での反射に相当するので、位相は変化しないが、屈折率が小さい 媒質から大きい媒質へ入射するときの反射は、固定端での反射に相当するので、 位相がπだけ(半波長分)変化することを述べて、干渉の条件式を解説して いる。また、「薄膜による光の干渉」の項目では、しゃぽん玉の干渉のことを 取り上げ、しゃぽん玉の表面が虹色に色づく理由を干渉の条件式を示したあと で本文と脚注で詳しく解説している(國友正和ほか10名、2013:187-188)。 しかし、こうした解説に対して、教科書では具体的な実験結果が示されていな かった。先の論文(松村・塩野、2012、2013、投稿中)では、しゃぽん玉の干 渉スペクトルの測定法を提示し、その測定により、高校物理の教科書にある干 渉の条件式を使って、しゃぽん玉の膜厚が決定できることを示した。

本稿では、しゃぼん玉やセッケン膜の干渉スペクトルの測定と解析に関する

203

理論的な背景を,実験条件と実測スペクトルの関係まで含めて詳細に解説し た。特に,理論式の導出過程をくど過ぎるくらい細部まで記述したのは,教育 現場の担当者に,本稿の数式を確認してもらうことで,しゃぼん玉の干渉実験 が理論的なバックボーンを持っていることを伝えかったからである。

しゃぼん玉は、身近な生活の場で見られ、その姿形の美しさから多くの人を 惹きつける魅力的な観察対象である。このしゃぼん玉を干渉実験で教材化する ことは、理科への関心を高めることにつながるので重要であると考える。それ ゆえ、本稿が教育現場でしゃぼん玉の干渉実験の教材化のために役立てば幸い である。

謝辞

本研究は JSPS 科研費 23501037 の助成を受けて行ったものである。

参考文献

國友正和ほか10名:物理(平成24年3月検定済),数研出版,2013.

- 松村敬治・塩野正明:分光測定の高速化によるシャボン玉の膜厚の測定法の確立,西南 学院大学人間科学論集,8(1),27-43,2012.
- 松村敬治・塩野正明:シャボン玉の反射光と透過光の分光測定による膜厚の決定,西南 学院大学人間科学論集,8(2),215-228,2013.
- 松村敬治・塩野正明:しゃぽん玉の薄膜の可視分光による干渉実験―反射光と透過光の 干渉スペクトルの同時測定―,科学教育研究,投稿中.
- 谷田貝豊彦: 例題で学ぶ光学入門, 森北出版, 2010.

西南学院大学人間科学部児童教育学科